a2 United States Patent

US009218251B1

10) Patent No.: US 9,218,251 B1

Hemashekar et al. (45) Date of Patent: Dec. 22, 2015
(54) METHOD TO PERFORM DISASTER (56) References Cited
RECOVERY USING BLOCK DATA US. PATENT DOCUMENTS
MOVEMENT -
. . 6,269,431 B1* 7/2001 Dunhamcccc.... 711/162
(71) Applicants:Bharath Siddapur Hemashekar, 6,883,076 B1* 4/2005 Ohr 711/163
Karnataka (IN); Vaibhav Khanduja, 7,024,527 B1* 4/2006 Ohrccoo..... .. 711/161
Cupertino, CA (US); Ravi Shankar 7,281,104 B1* 10/2007 Tsypliaev et al. o T11/165
Andra P ,d h (IN ’ ’ 8,504,529 B1* 82013 Zhengetal. 707/679
ndra Pradesh (IN) 8.621,165 B1* 12/2013 Sridharanetal. ... 711/162
8,924,700 B1* 12/2014 Karmarkaretal. 713/2
(72) Inventors: Bharath Siddapur Hemashekar, 8,949,197 B2* 2/2015 Wertheimeretal. 707/678
Karnataka (IN); Vaibhav Khanduja 2007/0266203 Al* 11/2007 Amanoetal. ... 710111
. ’ K . ’ 2010/0049750 Al* 2/2010 Srivastava et al. 707/202
Cupertino, CA (US); Ravi Shankar, 2011/0022811 Al* 1/2011 Kirihataetal. ... o 711162
Andra Pradesh (IN) 2012/0023146 Al1* 1/2012 Shojietal. 707/827
2012/0117342 Al* 5/2012 Karondeetal. 71162
(73) Assignee: EMC Corporation, Hopkinton, MA 2013/0151802 Al* 6/2013 Bahadureetal. ... 711/162
(US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Gabriel Chu
patent is extended or adjusted under 35 Assistant Examiner — Paul Contino
U.S.C. 154(b) by 231 days. (74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP
(21) Appl. No.: 13/794,237
57 ABSTRACT
22) Filed: Mar. 11,2013 . .
(22) File a2 A method and system for disaster recovery includes a process
(51) Int.ClL for executing a disaster recovery client software on a target
system. The disaster recovery client software queries a disas-
GO6F 11/14 (2006.01) : . .
ter recovery server with an identifier for the target system,
(52) US.CL . : .
) receives a backup volume information for the target system
CPC GOGF 11/1446 (2013.01); GOGF 11/1458 from the disaster recovery server, mounts the backup volume
. . . (2013.01) to the target system, and transfers data from the backup vol-
(58) Field of Classification Search ume to a physical volume of'the target system using a destruc-

CPC GO6F 11/1446; GOGF 11/1458
USPC vt 714/4.3,4.4, 6.31
See application file for complete search history.

tive recovery process with block level data transfer.

20 Claims, 4 Drawing Sheets

101
INITIATE DISASTER RECOVERY PROCESS l’x/

105
EXECUTE DISASTER RECOVERY CLIENT SOFTWARE ~
ON TARGET SYSTEM

¥

IDENTIFIER FOR TARGET SYSTEM

QUERY DISASTER RECOVERY SERVER WITH ‘|V\1,97

103
LOAD BASIC OPERATING SYSTEM ON TARGET
SYSTEM

RECEIVE BACKUP VOLUME(S) AND VIRTUAL CONTAINER 1o
INFORMATION FOR TARGET DEVICE

CHECK WHETHER
SUFFICIENT SPACE ON
PHYSICAL YOLUME(S) OF
TARGET SYSTEM?

11
v

1

Ed

| MOUNT BACKUP VOLUME TO TARGET SYSTEM

i

OPEN OR CREATE PHYSICAL VOLUME IN PERSISTENT "
STORAGE OF TARGET SYSTEM

’

INITIATE DESTRUCTIVE RECOVERY FROM BACKUP e
'VOLUME TO PHYSICAL YOLUME

¥ 121
No ALL VOLUMES
RESTORED?

YES

' REBOOT TARGET SYSTEM

e

¥

125
END DISASTER RECOVERY I’\J

U.S. Patent Dec. 22, 2015 Sheet 1 of 4 US 9,218,251 B1

101
INITIATE DISASTER RECOVERY PROCESS -~
$ 103
LOAD BASIC OPERATING SYSTEM ON TARGET e
SYSTEM
L 105
EXECUTE DISASTER RECOVERY CLIENT SOFTWARE [
ON TARGET SYSTEM
‘ 107
QUERY DISASTER RECOVERY SERVER WITH ./
IDENTIFIER FOR TARGET SYSTEM
¢ 109
RECEIVE BACKUP VOLUME(S) AND VIRTUAL CONTAINER —~_/
INFORMATION FOR TARGET DEVICE

Yy
113 11
<>/
/) CHECK WHETHER
END SUFFICIENT SPACE ON
PROCESS PHYSICAL VOLUME(S) OF

TARGET SYSTEM?

MOUNT BACKUP VOLUME TO TARGET SYSTEM

v
17

OPEN OR CREATE PHYSICAL VOLUME IN PERSISTENT - '
STORAGE OF TARGET SYSTEM

L 119

INITIATE DESTRUCTIVE RECOVERY FROM BACKUP -~/
VOLUME TO PHYSICAL VOLUME

v

121
"y

NO ALL VOLUMES

RESTORED?

123
REBOOT TARGET SYSTEM

v

125
F I G * 1 END DISASTER RECOVERY |

U.S. Patent Dec. 22, 2015 Sheet 2 of 4
. 201
;f
COMPUTING DEVICE
207
“—1| PROCESSOR |«
200
o e
213A || |[DR CLIENT 1
Ul SOFTWARE < 205
Il BASIC0S
11 PERSISTENT
MEMORY STORAGE
% 203
<—>[REMOVABLE
215 MEDIA DEVICE
NETWORK DR 21
INTERFACE SOFTWARE | 1]
o o138
|l //
BACKUP AND RECOVERY SYSTEM
251 263
PROCESSOR 753 755
DISASTER RECOVERY CKUP SERVER
SERVER BACKUP SERVE
BACKUP BACKUP
VOLUME | |, .| | VOLUME
1 N
257
VIRTUAL VIRTUAL
CONTAINER 1 CONTAINER N
259
PHYSICAL STORAGE SYSTEM
259 |

US 9,218,251 B1

COMPUTING DEVICE

PHYSICAL
VOLUME

N

PERSISTENT
STORAGE

FIG. 2

US 9,218,251 B1

Sheet 3 of 4

Dec. 22, 2015

U.S. Patent

€ Old

NONNNNN
NNNNNN

AL
SIS SIS
SIS
AL
SIS ST

Y Swoiqveid
1y] SH901q €91l

] sy0(q Loy

awin|oA e wolj Adoo [aAs] aji4

US 9,218,251 B1

Sheet 4 of 4

Dec. 22, 2015

U.S. Patent

v "Old

[] swooid pasnun

[s%00|q pasn

awnjop wou Adod [9As] ¥o0|g

US 9,218,251 Bl

1
METHOD TO PERFORM DISASTER
RECOVERY USING BLOCK DATA
MOVEMENT

CROSS-REFERENCE TO RELATED
APPLICATION

Cross-reference is made to a co-pending patent application
by Shankar Balasubramanian for “INCREMENTAL
BLOCK BASED BACKUP” filed on Sep. 30, 2011, assigned
Ser. No. 13/250,593; co-pending patent application by Shan-
kar Balasubramanian for “BLOCK BASED BACKUP” filed
on Sep. 30, 2011, assigned Ser. No. 13/250,637; co-pending
patent application by Shankar Balasubramanian for “SYN-
THETIC BLOCK BASED BACKUP” filed on Sep. 30, 2011,
assigned Ser. No. 13/250,692; co-pending patent application
by Shankar Balasubramanian for “RECOVERY FROM
BLOCK BASED PHYSICAL TO VIRTUAL CONVER-
SION” filed on Sep. 30, 2011, assigned Ser. No. 13/250,717,
as the present application and commonly owned. The cross-
referenced application is incorporated herein by reference.

FIELD OF INVENTION

Embodiments of the present invention relate generally to
data recover in response to system failures. More particularly,
embodiments of the invention relate to restoring computing
devices from backup after system failures using a block data
movement process.

BACKGROUND

In modern computer systems, a file system stores and orga-
nizes computer files to enable a program to efficiently locate
and access requested files. File systems can utilize a storage
device such as a hard disk drive to provide local access to data
or to utilize a network to provide access to data stored on a
remote file server over the network. A file system can also be
characterized as a set of abstract data types that are imple-
mented for the storage, hierarchical organization, manipula-
tion, navigation, access, and retrieval of data. The file system
software is responsible for organizing files and directories.

Many companies and individuals with large amounts of
stored data employ a file system as a data storage system.
These data storage systems can be located local to the data to
be backed up or at a remote site. The data storage systems can
be managed by the entity controlling the data storage devices
or a data storage service company. Data can be added to the
storage system at any frequency and at any amount.

Data storage systems may offer storage for backup and
disaster recovery. Transfer to remote storage may require the
transfer of data over a network. A local client data backup
application prepares and sends data from the local file system
to a backup system. The backup system stores the data
received from the local client application to be utilized in the
event of a corruption or failure at the computing device
executing the local client data backup application.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the invention are illustrated by way of
example and not by way of limitation in the figures of the
accompanying drawings in which like references indicate
similar elements. It should be noted that references to “an” or
“one” embodiment of the invention in this disclosure are not
necessarily to the same embodiment, and they mean at least
one.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 is a flowchart of one embodiment of block move-
ment data recovery process.

FIG. 2 is a block diagram of one embodiment of a backup
data storage and recovery system.

FIG. 3 is a block diagram of one embodiment of a file level
copy process of a data recovery storage system.

FIG. 4 is a block diagram of one embodiment of a block
level copy process of a data recovery storage system.

DETAILED DESCRIPTION

Several embodiments of the invention with reference to the
appended drawings are now explained. The following
description and drawings are illustrative of the invention and
are not to be construed as limiting the invention. Numerous
specific details are described to provide a thorough under-
standing of various embodiments of the present invention.
However, in certain instances, well-known or conventional
details are not described in order to provide a concise discus-
sion of embodiments of the present inventions.

Reference in the Specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or
characteristic described in conjunction with the embodiment
can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the Specification do not necessarily all refer to
the same embodiment.

Disaster Recovery (DR) is a process of preparing for recov-
ery or continued operation of technology infrastructure criti-
cal to an organization after a disaster that renders a computer
inoperable or corrupts the data on the physical disk. One of
the critical aspects of DR planning is timely recovery of data
and processes following the incident. Organizations develop
recovery strategies to ensure that the system downtime is
minimal at best, within acceptable limits/threshold and pre-
dictable. For reducing outage time, the system should be
recovered quickly and eftectively following disruption. Cur-
rently, time to recover depends on the type of data and the size
of critical data. The embodiments present a method and sys-
tem that can reduce the recover time irrespective of the type of
data that is backed up thereby providing a predictable outage
window. The method and systems backup the critical vol-
umes/data required for disaster recovery in virtual disk con-
tainer. The advantages conferred by using virtual disk con-
tainers is that they are mountable and hence easily accessible.
During the disaster recovery procedure, the backup volume
can be mounted on the failed system. Backup data is then
available on the failed system as a volume. The handle to the
backup volume is opened to get access to the used blocks in
the backup volume residing in the mounted virtual container.
The used blocks in the virtual container can be copied to the
volume on the physical disk of the failed system by a destruc-
tive recovery copy process. A destructive recovery or image
copy process is block copy process implemented by a module
which copies source volume used blocks to a target volume
irrespective of the type of source volume file system. After
successful completion of the block copy process, the target
volume will be an exact replica of the source volume (w.r.t
data, file system, directory structure and size of the volume).

The embodiments of the invention include a method and
system that utilizes a block copy process, but there are other
systems that use a file based restoration process where the
backup data is not stored in a directly consumable format (i.e.,
it is not mountable). In these file based restoration processes,
backup data is stored in a proprietary format and hence itcan’t
be utilized to restore a critical volume at the block level. The
file based restoration process use proprietary file level recov-

US 9,218,251 Bl

3

ery procedures with file based backed up data. These file base
processes and systems contain two steps First, create all the
files on the on target volume on which DR is requested and
second, loop through all the files and restore corresponding
file data from the backup image. With this approach, support-
ing the restoring of different level of backups is too complex,
it is then required to maintain all the indices of files and their
corresponding offset in the backup image.

However, if the file based backup was in a mountable
format, then it would be possible to copy the data at the file
level. This would lead to lot of seeks and hence reduced
performance. When a volume is visualized in terms ofblocks,
there are only two kinds of blocks: unused blocks and used
blocks. During a destructive recovery, only the used blocks
are copied. Hence, it is necessary to seek only if unused
blocks are present in between used blocks. In case of file level
recovery, for every file, it is necessary to get the correspond-
ing blocks of a file and copy it to the destination volume.

The embodiments provide a number of advantages over
prior systems such as faster restores. Since the virtual con-
tainer with the backup volume is mountable, it can directly be
mounted such that the backed up can be accessed to do block
level copy from the mounted backup source volume to a target
volume on the failed system. Copy at the block level is faster
than at the file level and also it is unnecessary to create files in
the target volume separately. Hence, all the backup volumes
can be recovered quickly. Another advantage is the use of the
process and system with high density file systems. File level
copy has to traverse across the source volume file system and
copy each file’s data in the volume. This can be a time con-
suming process, especially for high density file systems,
where the number of files can be more than one million. In the
case of a block level copy, it is possible to skip a file system
layer and directly copy used blocks of the volume.

The embodiments support the utilization special files: With
block copy, an exact copy of the backup source volume folder
structure will be replicated in a failed or replacement target
volume, because the file system metadata can also be the part
of the used blocks in the volume. Hence during DR it is not
necessary to have any special considerations for special files.
The embodiments describe a process that requires less com-
putation. The process and structure support restoring differ-
ent levels of backups at once. DR will be faster because
neither is it necessary to consolidate the indexes of files in full
or incrementally nor is it necessary to restore either a full
restoration or by incremental restoration. Virtual disk con-
tainers can automatically give the latest required view of the
volume. This provides access to the data for DR without
doing much computation.

The process and system support exact replica: Once the
backup is mounted, it contains all the file structure as of that
point in time. The only thing remaining to be done is to block
level copy the source backup volume to the target volume.
After a successful copy the target volume like be the same as
the mounted backup image. Since DR will bring back an
exact replica of volumes and the entire system and thereby
making DR highly reliable for determining a predicatable
outage window: In this approach it is not necessary to get the
offset location for each and every file, after a mount of the
backup image, it is only necessary that the used blocks of the
mounted volume be copied.

The embodiments of the process and system utilize the
following terms to describe the content of the back up pro-
cess. ‘Block,’ is the least or minimum addressable unit of a file
system over a volume. A ‘Used block’ is a set of data that the
file system has occupied to store file contents. An ‘unused
block,” is a block that is free and available for file system. The

10

20

25

30

40

45

50

55

60

65

4

term ‘extent’ indicates a range of used blocks (offset and
length of contiguous used blocks), and ‘extent list” is a vari-
able sized list of extents.

FIG. 1 is a flowchart of one embodiment of block move-
ment data recovery process. In one embodiment, the process
is manually or automatically initiated after a disaster or simi-
lar event (Block 101). The process can be initiated by loading
and executing disaster recovery software on the failed system.
The disaster recovery software can be specialized software
that establishes communication with a backup and recovery
system over a network. The disaster recovery software can
run directly on the hardware of the failed system or can run on
an operating system. The operating system that is utilized can
be a lightweight or thin operating system having a minimum
set of functions necessary to start up and recover the failed
system. In the cases where a separate operating system is
utilized, the operating system is the first aspect of the disaster
recovery software that is loaded and executed (Block 103).
The disaster recovery software, including any operating sys-
tem or specialized backup and recovery software, can have
any configuration and distribution of functionality over any
number of modules. For sake of clarity, the embodiments will
be described using an example of disaster recovery software
that is divided into a basic operating system and a disaster
recovery client.

The basic operating system is distinct from a standard
operating system in that it has a minimal set of functions that
are implemented that enable the recovery of the failed system.
Such functions include basic process management, input/
output functionality, network communication functionality
and similar functions that facilitate the recovery of the failed
system. The basic operating system can be loaded from a
protected persistent storage device, a removable medium
drive (e.g., a universal serial bus (USB) drive, compact disc
(CD) drive or similar drive), over the network or from a
similar location accessible to the failed computer system.

Oncethe operating system is executing or similar function-
ality has been established for the failed computing system,
then the disaster recovery client software can be loaded and
executed (Block 105). The disaster recovery client software
can provide functionality including communication with a
backup and recovery system, virtual container and backup
volume mounting, destructive block data transfer and similar
processes. The disaster recovery client software can provide a
user interface to enable a user direct any portion of the disaster
recovery process. In other embodiments, any or all of the
disaster recovery can be an automated process. The disaster
recovery client software can be loaded from a protected per-
sistent storage device, a removable medium drive (e.g., a
universal serial bus (USB) drive, compact disc (CD) drive or
similar drive), over the network or from a similar location
accessible to the failed computer system.

The disaster recovery client software can establish com-
munication with and query a disaster recovery server at the
backup and recovery system (Block 107). The query can
include an identifier for the target failed system to enable the
disaster recovery server to identify the corresponding backup
volume and virtual container for the target failed system. The
disaster recovery client software can utilize any communica-
tion medium and protocol to communicate with the backup
and recovery system to transfer the backup data from the
backup and recovery system to the target failed system.

In response to the query, the disaster recovery client soft-
ware can receive backup volume and virtual container infor-
mation for the backup data maintained at the backup and
recovery system for the target failed system (Block 109). The
information can include the size of the backup volume that is

US 9,218,251 Bl

5

to be restored, the number of volumes to be restored and
similar information. The information can also include the
configuration of the backup volume including a bitmap of
used blocks, an extent list and similar information detailing
the used blocks of the backup volume. Where a bitmap of
used blocks in the backup volume is provided in the informa-
tion, then an extent list can be derived. The disaster recovery
process can be configured to restore all of the backed up data
or only critical aspects of the backed up data to minimize the
downtime of the target failed system. In one embodiment, this
information is utilized to check whether there is sufficient
space in the persistent storage device of the failed target
device to store the back up volume (Block 111). If there is not
sufficient space, then the disaster recovery process can be
aborted (Block 113).

If'there is sufficient space on the local persistent storage of
the failed target system, then the process proceeds by mount-
ing the backup volume and virtual container to the target
failed system (Block 115). The mounting of the backup vol-
ume treats the backup volume as though the virtual container
was a local physical device attached to the target failed sys-
tem. The backup volume is then accessible through file sys-
tem operations of the basic operating systems in the same
manner that local physical volumes are accessible. A local
physical volume to receive data from the mounted backup
volume is then either opened or created (Block 117). If the
physical volume survived the disaster it can be opened, how-
ever if the physical volume was lost, then a new physical
volume is created in the local persistent storage of the target
failed system. The physical volume is created to have size and
similar characteristics that match the backup volume.

Once the physical volume is ready, then the disaster recov-
ery client can initiate a destructive recovery process using a
block level data transfer (Block 119). The destructive recov-
ery process transfers data at the block level by transferring
extents or consecutive used block ranges and overwriting the
physical volume to recreate the backup volume at the target
failed device. Once the entire backup volume has been copied
to the physical volume, then the physical volume is an exact
copy of the backup volume and represents the state of the
failed target machine at the time of the last backup to the
backup and recovery system. The newly reconstructed physi-
cal volume can then be utilized immediately and is capable of
being used without the need of the basic operating system or
disaster recovery software after a system reboot. After the
backup volume copy has completed a check can be made
whether any additional volumes are to be copied in the case
where the target failed system includes multiple backup vol-
umes (Block 121). If there are additional backup volumes to
copy, then the process repeats by checking whether there is
sufficient space for the next backup volume (Block 111).
When all backup volumes have been transferred where there
is sufficient space, then the target failed system can be reboo-
ted to load and execute off the software of the reconstructed
physical volumes (Block 123). This then completes the disas-
ter recovery process when the operation of the target failed
system has been verified to be functioning after the reboot.

FIG. 2 is a block diagram of one embodiment of a backup
data storage and recovery system. In one embodiment, a
backup and recovery system 251 is in communication with a
set of computing devices 201 over a network 219. A ‘set,” a
used herein refers to any positive whole number of items
including one item. The backup and recovery system 251 can
store a set of backup volumes that are block transfer replicas
of physical volumes of the computing devices 201 at the time
of the last backup.

15

30

40

45

55

6

The backup and recovery system 251 can be a single server
machine or can be a set of separate server machines. The
backup and recovery system 251 can include a processor 263
and a physical storage system 259 amongst other standard
components of a server machine. The processor 253 can be a
single processor or a set of processors in a single housing or
spread across a set of servers. These processors 263 can
execute a disaster recovery server 253 and a backup server
255. The backup server 255 collects the data at defined inter-
vals that is stored in the physical volumes 203 of the comput-
ing systems 201 that the backup server 255 services. This data
is stored in a set of virtual containers 259 in a physical storage
system 259 of the backup and recovery system 251. The
virtual containers 259 are virtualized drives that can be
mounted to remote computing devices 201. The physical
storage system 259 can be composed of any number and type
of'persistent storage devices such as optical, magnetic or solid
state drives.

In one embodiment, the disaster recovery server 253 pro-
cesses requests and data transfers in coordination with disas-
ter recovery client software 213A,B on the computing sys-
tems 201 in the case of a system failure. The disaster recovery
server 253 can transfer any backup volume 257 and facilitate
the mounting of any virtual container 257 to any of the com-
puting systems 201 upon request from the disaster recovery
client software 213 A,B. The disaster recovery server 253 can
authenticate connection and transfer requests from the disas-
ter recovery client software 213A,B.

The computing systems 201 can be any type of computing
devices including desktop devices, server, mobile devices, or
similar devices with fixed storage and network capabilities.
The computing systems 201 can include a processor 207,
memory 211, persistent storage 203, network interface 215,
removable media device 217 and similar components. The
processor 207 can be a set of processors to execute programs
and application within the computing system 201. The
memory 211 can be utilized for short term data storage for the
programs and applications of the computing system 201. The
persistent storage 203 contains a set of physical volumes 205
that include a file system maintained by an operating system
of the computing system 201.

The physical volume 205 can have any file system struc-
ture, content or organization. The disaster recovery process
described herein is compatible with any file system or con-
tent. The persistent storage 203 can have any number of
physical devices with any amount of storage. This storage can
be divided into any number of physical volumes 205. Each of
these physical volumes 205 can be backed up on a block by
block basis at the backup and recovery system 251 by the
backup server 255. In the case of a failure or corruption the
physical volumes can be replaced with the corresponding
backup volumes to return the computing system 201 to opera-
tion in a timely and predictable manner.

The recovery process as described above, is implemented
by the disaster recovery client software 213A,B. The disaster
recovery client software 213 A,B can run on a basic operating
system 211 that provides a minimum set of functions for
supporting the restarting and restoration of a failed comput-
ing system. The operating system 211 and disaster recovery
client software 213A,B can be loaded and executed by the
processor 207 from memory 211, removable media device
217 or similar location.

A network interface 215 can provide access to the backup
and recovery system 251 over a network 219. The computing
system 201 can be connected to any number of networks 219
and any type of networks including local area networks, wide
area networks, such as the Internet, and similar networks. The

US 9,218,251 Bl

7

computing systems 201 can be connected through either
wired or wireless communication mediums.

FIG. 3 is a block diagram of one embodiment of a file level
copy process of a data recovery storage system. The diagram
illustrates the number of seeks that are required to retrieve and
transfer data on a file by file basis in the case of a recovery
process using file level transfer. The blocks for a particular file
are distributed over the blocks of the storage device shown as
a line of consecutive blocks in the diagram. To retrieve file 1,
for example, the first block is retrieved then the physical disk
must seek to the fourth block and so forth until three seeks are
utilized. Seeks are slow in comparison to reading consecutive
blocks. So highly fragmented files, that is files with sparsely
distributed blocks, take longer to retrieve than tightly grouped
files. To retrieve all four files in the example, a large number
of'seeks are needed. Extrapolated over a large data set such as
a backup process this leads to serious performance issues.
Specifically if the system copy each of the files from this
illustrated volume it would need 8 seeks. To fetch file 1 it
would need 3 seeks. To fetch file2 it would need 2 seeks. And
to fetch file3 it would need 3 seeks. Since the number of seeks
are high, a block level copy of data is faster.

FIG. 4 is a block diagram of one embodiment of a block
level copy process of a data recovery storage system. With a
block level copy, the file organization and distribution is
ignored. The process transfers all used blocks to recreate the
entire file system when the transfer is complete as the file
structure is inherently maintained even it if isn’t explicitly
utilized. In the illustrated example only a single seck is
required. The block level copy process copies each extent of
a source backup volume to a target physical volume at the
same extent offset. In other words, the location of each extent
is the same in both the source and target by maintaining the
offsets thereby skipping the copy of the unused blocks but
keeping the accurate spacing. The result is a target physical
volume that is identical to the backup volume in the virtual
container. Since the backup volume has point in time backup
of the data prior to the event that disabled the computer
system, there is an exact replica of all critical data for the
system to be able to function as it was functioning at that time.
Overall this is 150% faster than the file level copy and sig-
nificantly reduced the outage of the computing system.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

10

15

20

25

30

35

40

45

50

55

60

65

8

Embodiments of the invention also relate to an apparatus
for performing the operations herein. Such a computer pro-
gram is stored in a non-transitory computer readable medium.
A machine-readable medium includes any mechanism for
storing information in a form readable by a machine (e.g., a
computer). For example, a machine-readable (e.g., computer-
readable) medium includes a machine (e.g., a computer) read-
able storage medium (e.g., read only memory (“ROM”), ran-
dom access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory devices).

The processes or methods depicted in the preceding figures
can be performed by processing logic that comprises hard-
ware (e.g., circuitry, dedicated logic, etc.), software (e.g.,
embodied on a non-transitory computer readable medium), or
acombination of both. Although the processes or methods are
described above in terms of some sequential operations, it
should be appreciated that some of the operations described
can be performed in a different order. Moreover, some opera-
tions can be performed in parallel rather than sequentially.

Embodiments of the present invention are not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
can be used to implement the teachings of embodiments of the
invention as described herein.

In the foregoing Specification, embodiments of the inven-
tion have been described with reference to specific exemplary
embodiments thereof. It will be evident that various modifi-
cations can be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
following claims. The Specification and drawings are,
accordingly, to be regarded in an illustrative sense rather than
a restrictive sense.

What is claimed is:
1. A computed-implemented method for a disaster recov-
ery of data, the method comprising:

executing a disaster recovery client software executed by a
processor on a target system,

querying, by the disaster recovery client software, a disas-
ter recovery server with an identifier for the target sys-
tem, including transmitting the identifier of the target
system from the target system over a network to the
disaster recovery server, wherein the identifier uniquely
identifies the target system;

receiving, by the disaster recovery client software at the
target system, a backup volume information and a vir-
tual container information for the target system from the
disaster recovery server, wherein the backup volume
information of a backup volume and the virtual con-
tainer information are identified by the disaster recovery
server based on the identifier of the target system;

determining whether there is a sufficient storage space in a
physical volume of the target system to restore the
backup volume based on the backup volume informa-
tion;

in response to determining that there is sufficient storage
space, mounting a virtual container containing the
backup volume to the target system based on the virtual
container information to allow the target system to
access the backup volume of the virtual container main-
tained by the disaster recovery server over a network,
wherein the backup volume is accessible by the target
system as if it is a local storage volume; and

transferring data from the backup volume contained in the
virtual container to the physical volume of the target
system using a destructive recovery process with block
level data transfer, including

US 9,218,251 Bl

9

traversing the backup volume in the virtual container at
a block level with a plurality of offsets within the
backup volume to identify one or more blocks that
contain data therein, and

copying only blocks that contain data to the physical
volume of the target system, regardless of which files
the blocks are associated with.

2. The method of claim 1, further comprising:

loading a basic operating system on the target system.

3. The method of claim 1, wherein the backup volume
information contains a size of the backup volume and a num-
ber of volumes to be restored from the disaster recovery
server.

4. The method of claim 1, further comprising:

creating the physical volume on the target system with a

size matching the backup volume.

5. The method of claim 1, further comprising:

rebooting the target system to execute from the physical

volume.

6. The method of claim 1, wherein the backup volume
information includes a bitmap of used blocks in the backup
volume.

7. The method of claim 6, further comprising:

generating an extent list from the bitmap.

8. The method of claim 7, further comprising:

transferring each extent on the extent list from the backup

volume to the physical volume using a same offset loca-
tion in the physical volume as used in the backup volume
for each extent.

9. A computer system comprising:

a network interface to enable data transfer over a network

and communication with a disaster recovery server;

a persistent storage device; and

aprocessor coupled to the network interface and persistent

storage devices, the processor configured to

execute a disaster recovery client software, to query, by
the disaster recovery client software, the disaster
recovery server with an identifier for the computer
system, including transmitting the identifier of the
target system from the target system over the network
to the disaster recovery server, wherein the identifier
uniquely identifies the target system,

receive, by the disaster recovery client software at the
target system, a backup volume information and a
virtual container information for the computer system
from the disaster recovery server, wherein the backup
volume information of a backup volume and the vir-
tual container information are identified by the disas-
ter recovery server based on the identifier of the target
system,

determine whether there is a sufficient storage space in a
physical volume of the target system to restore the
backup volume based on the backup volume informa-
tion,

in response to determining that there is sufficient storage
space, mount a virtual container containing the
backup volume to the computer system based on the
virtual container information to allow the target sys-
tem to access the backup volume of the virtual con-
tainer maintained by the disaster recovery server over
a network, wherein the backup volume is accessible
by the target system as if it is a local storage volume,
and

transfer data from the backup volume contained in the
virtual container to a physical volume of the persistent
storage device using a destructive recovery process
with block level data transfer, including

10

15

20

25

30

35

40

45

50

55

60

65

10

traversing the backup volume in the virtual container
at ablock level with a plurality of offsets within the
backup volume to identify one or more blocks that
contain data therein, and
copying only blocks that contain data to the physical
volume of the target system, regardless of which files
the blocks are associated with.

10. The computer system of claim 9, wherein the processor
is further configured to load a basic operating system.

11. The computer system of claim 9, wherein the backup
volume information contains a size of the backup volume and
anumber of volumes to be restored from the disaster recovery
server.

12. The computer system of claim 9, wherein the processor
is further configured to create the physical volume with a size
matching the backup volume.

13. The computer system of claim 9, wherein the processor
is further configured to rebooting the computer system to
execute from the physical volume.

14. The computer system of claim 9, wherein the backup
volume information includes a bitmap of used blocks in the
backup volume.

15. The computer system of claim 14, wherein the proces-
sor is further configured to generate an extent list from the
bitmap.

16. The computer system of claim 15, wherein the proces-
sor is further configured to transfer each extent on the extent
list from the backup volume to the physical volume using a
same offset location in the physical volume as used in the
backup volume for each extent.

17. A non-transitory machine-readable medium having
instructions stored therein, which when executed by a pro-
cessor, cause the processor to perform operations, the opera-
tions comprising:

executing a disaster recovery client software executed on a

target system,

querying, by the client recovery client software at the target

system, a disaster recovery server with an identifier and
a virtual container information for the target system,
including transmitting the identifier of the target system
from the target system over a network to the disaster
recovery server, wherein the identifier uniquely identi-
fies the target system;

receiving, by the client recovery client software at the

target system, a backup volume information and a vir-
tual container information for the target system from the
disaster recovery server, wherein the backup volume
information of a backup volume and the virtual con-
tainer information are identified by the disaster recovery
server based on the identifier of the target system;

determining whether there is a sufficient storage space in a

physical volume of the target system to restore the
backup volume based on the backup volume informa-
tion;
in response to determining that there is sufficient storage
space, mounting a virtual container containing the
backup volume to the target system based on the virtual
container information to allow the target system to
access the backup volume of the virtual container main-
tained by the disaster recovery server over a network,
wherein the backup volume is accessible by the target
system as if it is a local storage volume; and

transferring data from the backup volume contained in the
virtual container to the physical volume of the target
system using a destructive recovery process with block
level data transfer, including

US 9,218,251 Bl
11

traversing the backup volume in the virtual container at
a block level with a plurality of offsets within the
backup volume to identify one or more blocks that
contain data therein, and
copying only blocks that contain data to the physical 5
volume of the target system, regardless of which files
the blocks are associated with.
18. The non-transitory machine-readable medium of claim
17, wherein the operations further comprise:
loading a basic operating system on the target system. 10
19. The non-transitory machine-readable medium of claim
17, wherein the backup volume information contains a size of
the backup volume and a number of volumes to be restored
from the disaster recovery server.
20. The non-transitory machine-readable medium of claim 15
17, wherein the operations further comprise:
creating the physical volume on the target system with a
size matching the backup volume.

#* #* #* #* #*

